1.智能照明系统与楼宇自控系统的区别?

2.楼宇的自控系统

3.什么叫楼控系统?

4.智能建筑中的楼宇自动化系统理论浅析?

5.楼宇自动控制系统的功能

6.分析楼宇自控系统的设计及存在的问题

楼宇控制系统可采用的控制方法_楼宇控制系统

楼宇自控系统(BAS)是智能楼宇中的一个集成子系统,主要的功能是对大楼内实时监控系统的集成监控、联动以及管理。那么到底什么是楼宇自控系统呢?它具体有何作用?

一、 什么是楼宇自控系统

楼宇自控系统简称BAS,是智能建筑中不可或缺的重要组成,它的特点是“集中管理、分散控制”,主要是对整个建筑内的公用机电设备进行优化以及自动化控制管理,例如:中央空调设备、给排水设备、照明设备、电梯设备等,从而达到减少设备故障,降低维护和运营成本。楼宇自控系统的最终目的是能够给建筑使用者提供一个更舒适、高效、安全、快捷、便利、经济的生活环境。

二、 楼宇自控系统的作用

1. 实时监控,降低事故发生概率

可以通过计算机系统实时监控大楼运营状态,及时发现人工无法发现的隐患,避免重大损失。

2. 满足使用者舒适度要求

能够进行自动恒温、恒湿调控,保证室内有合适的温湿度;自动输送新风,保证空气清新,减少办公室综合征;人性化智能照明,工作生活更加便捷。

3. 科学管理,降低成本

通过楼宇自控系统进行自动化监控和有效管理,可以实现用最低的能耗维持设备的正常运行,节约能源;通过对设备的定时管理。减轻磨损,增长设备使用年限,节省维护费用;方面设备操作管理,提高工作人员效率,减少企业人力成本。

智能照明系统与楼宇自控系统的区别?

一、系统集成

楼宇自控系统的关键组成部分之一是系统集成。在搭建系统时,需要将空调系统、照明系统、安防系统等多个子系统进行集成,以便实现信息交互和联动控制。选择适合的集成技术和协议至关重要,它们应能确保各个子系统的顺畅运行和互操作性。

二、传感器网络

为了获取楼宇内外环境的数据,楼宇自控系统需要大量的传感器。温度、湿度、光照强度等数据的准确性和实时性对于系统性能至关重要。因此,在搭建系统时,应合理设计传感器网络布局,并选择合适的传感器技术和通信协议,以确保数据的准确采集和高效传输。

三、远程监控与控制

现代楼宇自控系统通常支持远程监控与控制功能,通过网络实现远程访问和管理。为了确保远程访问的安全性和可靠性,需要考虑网络架构、加密技术等因素,并采取相应的安全措施。这样的设计使得用户能够随时随地监测和控制楼宇系统,提升了系统的便捷性和灵活性。

四、数据分析与智能决策

楼宇自控系统所收集的大数据具有重要价值,可以用于优化能源利用和提升建筑效能。在搭建系统时,应选择适合的数据存储和处理技术,并结合机器学习和人工智能算法,实现数据分析和智能决策的功能。这样的智能化设计将帮助用户更加高效地管理和维护楼宇系统。

五、用户界面与交互设计

楼宇自控系统的用户界面应简洁直观,具备良好的用户体验。在搭建系统时,应注重界面的设计和交互方式的合理安排,使用户能够轻松操作和监控系统。同时,界面的可定制性也很重要,以满足不同用户的需求。

六、系统可扩展性

楼宇自控系统应具备一定的可扩展性,能够方便地集成新的设备和功能。为此,在搭建系统时,应选择开放式的硬件和软件平台,以便后续的系统升级和功能扩展。这样的设计将保证系统的灵活性和可持续发展能力。

楼宇的自控系统

建筑照明是节能设计中优化的对象,照明节能必须引起重视。但是,单纯依靠传统的楼宇BA控制系统来实现简单的区域照明和定时开关功能显然难以满足照明节能的需求。因此,引入智能照明控制系统势在必行。智能照明自动控制系统不仅可以节约能源,降低维护成本,提高照明质量,还可以实现建筑物的智能照明控制。智能照明控制系统只是楼宇控制系统中的一种。部分。

二、智能照明系统和楼宇自动化系统有什么区别

智能照明系统是应用最广泛的系统之一,也是实际运行中容易与楼宇自控系统混淆的子系统之一。在现有智能建筑的照明系统设计中,一般采用旧的设计方法,或者在以往的照明设计系统中楼宇自控软件,由楼宇自动化系统(BAS)控制的触点串联在照明电路中,中央监控实现特殊控制或区域控制和定时开关等功能,增加红外感应实现形状控制。当然,这种控制方式有其明显的局限性:

经济性:为了节省成本,这种设计中的电路数量一般较少,而且设计往往只注重大面积的控制。如果从人性化和节能的角度对电路进行细分,就会造成投资。成本大幅增加,这是投资者不愿看到的。但是环路的减少反过来又大大增加了最终所有者的使用成本(电费)。

方便:由于此类设计通常不在现场设置开关,而是通过BAS中控室对所有照明电路进行集中控制,用户无法根据现场实际情况进行切换和调整,不会干扰灯的状态和照度。照明。使用起来非常不方便。同时。由于控制功能过于简单,传统的照明设计只能在楼宇自动化(BAS)系统中实现一个简单的定时开关功能。如果要实现特定区域的场景预设、场景变化和亮度调节,实际操作技术难度较大。还是蛮大的。

独立性:由于这种简单的叠加照明系统并不是真正的独立子系统,当楼宇自动化系统(BAS)出现故障时,照明系统会同时受到影响,尤其是对于具有紧急疏散照明功能的照明电路来讲,这是绝对不可原谅的。

1、简单经济的设计

系统照明电路设计简单,系统安装方便,操作维护方便。其软件的可编程性和硬件结构的灵活,大大节省了建筑开发商的投资成本和维护运营成本,缩短了安装周期,提高了投资回报率。

系统中的每个输入、输出和系统支持单元都可以通过智能照明系统控制器连接,大截面负载电缆从输出单元的输出端直接连接到照明灯具或其他电气负载,无需切换,安装 整个系统安装时无需考虑任何控制关系。整个系统安装完成后,通过软件设置各单元的地址码,从而建立相应的控制关系。安装时只需在输出单元与负载之间使用负载电缆连接即可,可节省大量电缆,也可缩短施工时间和人工成本。

2、智能控制节省成本

由于智能照明系统采用控制软件对整个照明系统进行远程控制和集中监控,因此可以根据用户需要随时方便地修改控制关系。当由于某种原因需要改变灯光控制关系时,只需在软件中修改即可,无需重新布线。

同时由于采用红外传感器、亮度传感器、定时开关、调光技术和智能操作模式,可实现任意单点、双点、多点、区域、组逻辑控制、定时开关、亮度手动/自动调节、红外监控、遥控、场景组合等灯光控制功能,不仅可以显示丰富的灯光效果,让整个灯光系统按照最佳经济方案准确运行,从而大大减少操作和管理成本和最大限度地节约能源。

而且,与传统的照明控制方式相比,可以节约能源,降低使用成本,从而实现社会成本节约。

3、更能体现系统的兼容性和功能多样性

由于系统中的每个输入输出单元都存储了系统状态和控制指令,因此断电后数据不会丢失。当供电恢复时,系统会根据预先设定的记忆参数,自动恢复断电前的工作状态,实现无人值守操作。同时,控制回路与负载回路分离,输入和输出单元只通过一条两芯控制线作为总线连接,随时可以增加新的控制单元到网络中。

分布式智能控制和开放系统的设计可以通过通信协议(OPC)与其他楼宇管理系统(BMS)、楼宇自控系统(BAS)、安防和消防系统很好的集成,从而提高楼宇管理系统的智能化管理水平。物业符合现代生活的发展趋势。

系统管理员只要根据用户需求和外部环境的变化,修改软件设置或修改少量线路,即可调整灯光布局,扩展功能,适用于商业、工业、家庭的不同使用需求. 带有BAS系统的建筑,如果在设计中考虑到建筑的智能照明系统,肯定会提高建筑的智能化。

三、智能照明系统和楼宇自动化系统有什么区别

1、关于经济学

BA 建筑控制方法 (DDC)

由于成本原因,设计中控制回路的比例很小,往往只集中在一些大(重要)区域的控制上。从人性化管理的角度来看,节能、舒适等起到至关重要的作用。如果增加大量的控制回路,成本会急剧增加,这是开发者不希望看到的。

专为照明开发的智能系统,根据照明特点设计的专业控制网络,控制范围涵盖地下车库照明、楼层公共区域照明、功能区照明(办公室、会议室、多功能厅、餐厅、宾客房)、景观照明、泛光照明和上述区域的应急照明。

2、关于兼容性

BA 建筑控制方法 (DDC)

虽然各厂家开发的DDC产品都遵循一种通信协议(协议),但由于DDC设备外部结构复杂,接线方式多,产品质量参差不齐,一旦设备出现故障,需要维修更换,而原必须找到制造商。.

智能照明系统采用开放协议(EIB协议:欧洲总线协议),既是国际统一标准ISO框架内的协议,也是我国楼宇自动化的国家标准。全球已有数百家制造商的产品符合该协议。当系统(设备)出现故障,需要维护和更换时,有很多符合本协议的厂家可供选择。

3、关于独立

BA 建筑控制方法 (DDC)

由于这种简单的叠加照明系统并不是真正独立的子系统,当BAS发生故障时,照明系统也会同时受到影响,尤其是具有应急疏散照明功能的照明电路,会造成非常严重的问题后果.

智能照明系统为独立控制系统,设备丰富,稳定性好;如果有专门接受火警信号的输入模块,可以在后台系统出现故障时强制开启和关闭照明;也可以将照明驱动模块设置为总线断电后强制开启或关闭。

4、关于功能多样化

BA 建筑控制方法 (DDC)

由于此类设计现场通常没有开关,所有照明电路均通过BA中控室进行集中控制,用户无法根据现场实际情况进行切换和调整,不能干扰灯的状态和照度。照明,在实际使用中非常不方便。;

除了对灯光进行简单的开关(定时)控制外,要实现场景预设、场景变化和亮度调节楼宇自控软件,技术难度很大。现代建筑在智能、舒适、节能等方面的特点并没有体现出来。

除了DDC的中央控制和定时功能外,智能照明系统还可以在现场安装许多输入模块,如:智能面板、人体运动探测器、光传感器,并可根据现场人员活动灵活控制、自然光强度等照明实现不同场景;除开关功能外,还可以通过调光模块控制特定区域的调光和恒定照度,使照明得到最有效的利用;中央控制系统监控现场照明的运行情况,让管理人员及时发现现场问题。

5、关于系统搭建和设备安装

DDC模块不直接与负载相连,而是通过控制接触器来控制负载;DDC需要安装单独的控制箱,从控制箱连接到照明配电箱的接触器,线路多,结构复杂;DDC控制箱不仅占用空间而且增加了成本。

BA楼宇(DDC)系统通常使用网线进行系统连接,因此必须铺设在弱电桥上。这种强电流穿越的系统无屏蔽功能,施工要求高,极易受到干扰,影响信号传输。

由于没有现场控制开关、探测器等,现场仍安装传统的面板控制开关进行现场控制,并没有改变传统的控制方式,如电路结构复杂、电缆成本高、施工和维护困难。

智能照明系统所有设备只需一根总线连接,总线采用带屏蔽功能的四芯双绞线,可与强电桥一起敷设,无需注意信号干扰;驱动装置不使用接触器直接连接负载,模块采用标准导轨安装在照明配电箱内的微型断路器下方。接线简单,结构清晰。

现场可配置传感设备,如智能面板、人体运动传感器、光传感器等,所有传感设备只需通过总线连接,施工简单、使用方便、安全,与传统面板不需要安装开关。,节省大量材料成本和施工维护成本。

6、可靠性和功能性管理

DDC模块不能直接连接照明负载,而是通过控制接触器线圈间接控制照明负载。接触器不是长期带电装置,长期停电会粘连;频繁切换会导致触点老化;当进行更改或添加时,需要添加大量的 DDC 模块和接触器。

智能照明系统各设备内置CPU,可独立编程,灵活设置控制关系;改变控制功能时,可通过软件编程轻松实现;如果需要添加控制回路,只需在 Can 中添加驱动模块即可。每台设备都可以独立运行,也就是说一台设备的损坏不会影响其他设备的使用。

看完这篇文章,相信我对楼宇自控系统和智能照明系统有了一定的了解。其实,楼宇自控系统是否等同于智能照明系统的问题,我们可以回答。智能照明系统是楼宇自动化系统的一部分。

什么叫楼控系统?

大楼的设施管理者们在为管理大楼环境的楼宇自控系统投入资金时必须考虑多个因素。成本通常是第一要素,但其它因素如系统可靠性、维护成本和能否提供现成的替换DDC等也不可忽略。从长远观点看,这些因素都会影响运行成本。

系统可靠性影响成本最明显的方式是,当需要更换网络中的DDC时,且如果DDC很容易失效时,更换成本将会提高。DDC的配置在整个系统的可靠性方面也起着至关重要的作用。在早些年的控制应用中,通常在接线允许范围内将大部分或全部任务分配到一个处理能力强的大型DDC中。这种做法常会将相互无关的功能分配至同一个通用控制器。这就意味着一旦该DDC失效,与此相关的所有功能也将丧失,从而影响多个设备正常工作。多个功能分配至一个大型DDC也意味着发现并修理故障是费时的过程,因系统配置无功能的逻辑分组,而且更换大型DDC的成本也比小型DDC为高。 基于上述因素,现今的做法已向更模块化方向发展,为克服使用大型 DDC的缺陷,出现了专用DDC(Application Specific DDC)的概念。即每台AS DDC 专用于某一逻辑相关的特定功能,如一台DDC专用于一台变风量终端箱,一台风机盘管,一个区域照明控制等等。这种一台DDC专注于一种特定功能即为模块化,且一旦故障,发现并修理故障将很容易。某一设备故障将立刻被发现并找到相应控制器,更换小型控制器也会更便宜。因其实现“单一”功能,一台大型多功能DDC实现多功能任务,一旦故障需要整个更换,这就是导致成本提高所在。

小型控制器并不意味着其能力弱于大型控制器,技术发展到今天,小型控制器具有与大型控制器相同的决策能力,其能力来自于固化在每台专用控制器上的软件(也称为固件)的更智能的控制策略。每台模块式控制器能够监测输入量并独立做出适当的控制输出到受控设备,即为智能化DDC,这种智能及不依赖系统服务器的决策能力对系统的可靠性至关重要。只要电源不中断,不依赖服务器而独立决策的DDC能够继续工作,确保设备的控制不受影响。即使服务器工作异常或网络通讯中断。

当考虑简单的设备诸如风机盘管和照明等,专用的一对一DDC是一理想的应用。许多厂商生产用于简单设备如VAV终端的控制器,但只有为数不多的厂商愿意生产较大型HVAC设备如冷水机及相关水泵、冷却塔的专用控制器。部分原因是相比大楼内所需的照明或风机盘管DDC数量而言,一对一应用会需要较多的实现冷水机组内不同控制功能的DDC,但数量较少,达不到一定数量自然意味着大型设备的专用DDC 很昂贵,因此许多冷水机组的控制依然是通用DDC(与 专用DDC相反)的领地。由系统集成商根据需要在现场编程实现控制。

此种做法的结果是成本依然较高,这并非对DDC厂商,而是对业主而言。专门编程的通用DDC并非模块化。直接的一对一更换有可能出问题,如果已完成的编程逻辑未做完整详细的文件记录,DDC失效的代价是昂贵的。因更换通用DDC将是一个恢复从前配置的复杂过程,其编程并未遵循特定标准而是集成商工程师根据情况编制,这意味着每个配置的系统可能是不同的。如果原来的系统集成工程师不再承担替换工作,遇到的问题将直接导致昂贵的修理费用。

专用 DDC将有所不同,由于更换简单直接且是模块化,因而是即插即用的做法。此外,如果新建系统选择了普遍应用的开放通讯协议,例如LonWorks网络,更换DDC甚至可以选择不同品牌从而节省成本,因业主可从中选择具有价格优势的产品。

缺乏大型设备的专用DDC的主要原因是未能深入研究不同设备组的模块划分。迈科智控UCP2484L采用的新颖的做法是根据逻辑功能分组划分模块,而不是分配给冷水机组的每套设备一台DDC。

每台冷水机须配备相应的水泵,这些设备逻辑上关联且按一定顺序操作。将这些设备分组,称为“每套冷水机组”,意味着模块化的确是可能的。具有该特点的DDC,迈科智控的UCP2484L采用该方式而成为专用DDC,该DDC控制每套冷水机组内的所有设备,包括冷冻水泵、冷却水泵、冷却塔。

此处重要的是需注意逻辑分组是垂直而非水平的。也就是说,分组跨越了不同类型设备。相同类型设备的水平分组也可达到逻辑功能分组并专用的目的。但代价是牺牲了可靠性。因存在DDC失效的可能性,尽管作为工业用数字化产品这种可能性很低。设备水平分组意味着任意一个DDC失效后整个冷冻机房自动工作失效。例如,负责冷冻水泵操作的DDC失效时,所有冷水机组将无法开动,整个冷热源系统不能自动工作,故障率相当于冷冻机房所有监控冷水机组设备的DDC的总故障率。

从设备垂直分组可看出,任意一台迈科智控UCP2484L或一套机组内设备(如一台冷却塔)故障不会导致整个系统自动工作失效。而只会影响某一套机组。在所有带一台以上冷水机组的建筑物内,可在冷冻机房使用一台以上的迈科智控UCP2484L。另一种控制器UCL0882L是智能的群控控制器,它协调几台UCP2484L的操作并根据冷负荷需求量决定需开动的冷水机组台数。与天气逐渐变暖而按时间表启动各冷水机组,经常导致提供过多冷量的做法相反,此种控制极大地减少能耗,因冷水机组的耗电量占整个建筑物空调系统的50%以上。该控制法在新加坡管理大学冷水机组的控制中取得了显著的节能效果,其空调风系统为变风量系统。

该群控器DDC也能够顺序(按固定排序或运行小时)启动各冷水机组,以保证各机组磨损率基本相同,尽量减少机器故障及方便安排维护。然而,在现实中冷水机组的配置经常不会是一成不变的。这种时常存在的差别使得冷水机组专用DDC的概念变得困难。不同的情形很多,如:使用无冷却塔的风冷式机组、备用泵、二次泵及容量不同的冷水机等。以及在有些项目中,由于空间有限,冷却水泵与冷却塔一同置于屋顶、远离地下层的冷水机组等。还有的系统采用不带旁通阀的平衡管配置。

第二幅管线图取自实际工程配置,显示迈科智控控制器UCP2484L及UCL0882L也能够控制带不同容量冷水机组和二次泵的水系统(大容量机组及水泵标有字母”B”,而小容量者标有”S”,带相同号码的设备接至同一DDC)。该设计还应用了两台其它的专用DDC:迈科智控USP2484L,用于控制二次水泵组,一台控制大容量泵组,另一台控制小容量泵组。

即使对配置各异的冷冻水系统设计,该应用展示的灵活性也是实际和令人信服的,同时还保证了专用DDC的应用。随着当前的教育趋势集中于生物科技和信息技术,寻找具有必要的设备自控专业经验的暖通工程师已变得困难。因此,选择专用型的方式较从前更有意义。所有的智能控制策略写入DDC的固件中,让DDC处理控制并节省人力。

可以肯定的是,冷水机组控制正逐渐走向专用DDC的方向,因其给使用者带来的种种益处及可实现的成本节省。

智能建筑中的楼宇自动化系统理论浅析?

最近几年,未来的楼宇被人们认为将会是充满了各种各样的智能设备。楼宇控制网络中的传感器、执行器、阀门等都是智能的。楼宇的基础设施能无缝隙的将数据网和控制网连接起来,形成整体的楼宇网络。

整体的楼宇网络将成为未来楼宇控制的典范。整体的楼宇网络概念已不再是一个对将来的期望,今天它正在发生中。提供智能设备、子系统和系统的厂家正在如指数般的成长。这种推动力主要来自于业主们,他们对楼宇物业集成度的要求越来越高,这也是合理的。因为在今天,楼宇自控子系统如门禁、闭路电视、电梯、空调暖通、保安和消防中的智能产品都已问世了。

楼宇自动控制系统的功能

下面是中达咨询给大家带来关于智能建筑中的楼宇自动化系统理论的相关内容,以供参考。

1引言

楼宇自动化系统也叫建筑设备自动化系统(BuildingAutomationSystem简称BAS),是智能建筑不可缺少的一部分,其任务是对建筑物内的能源使用、环境、交通及安全设施进行监测、控制等,以提供一个既安全可靠,又节约能源,而且舒适宜人的工作或居住环境。

2楼宇自动化系统的组成与基本功能

建筑设备自动化系统通常包括暖通空调、给排水、供配电、照明、电梯、消防、安全防范等子系统。根据我国行业标准,BAS又可分为设备运行管理与监控子系统和消防与安全防范子系统,如图所示。一般情况下,这两个子系统宜一同纳入BAS考虑,如将消防与安全防范子系统独立设置,也应与BAS监控中心建立通信联系以便灾情发生时,能够按照约定实现操作权转移,进行一体化的协调控制。

建筑设备自动化系统的基本功能可以归纳如下:

(1)自动监视并控制各种机电设备的起、停,显示或打印当前运转状态。

(2)自动检测、显示、打印各种机电设备的运行参数及其变化趋势或历史数据。

(3)根据外界条件、环境因素、负载变化情况自动调节各种设备,使之始终运行于最佳状态。

(4)监测并及时处理各种意外、突发事件。

(5)实现对大楼内各种机电设备的统一管理、协调控制。

(6)能源管理:水、电、气等的计量收费、实现能源管理自动化。

(7)设备管理:包括设备档案、设备运行报表和设备维修管理等。

3楼宇自动化控制系统的原理

楼控系统采用的是基于现代控制理论的集散型计算机控制系统,也称分布式控制系统(Distributedcontrolsystems简称DCS)。它的特征是“集中管理分散控制”,即用分布在现场被控设备处的微型计算机控制装置(DDC)完成被控设备的实时检测和控制任务,克服了计算机集中控制带来的危险性高度集中的不足和常规仪表控制功能单一的局限性。安装于中央控制室的中央管理计算机具有CRT显示、打印输出、丰富的软件管理和很强的数字通信功能,能完成集中操作、显示、报警、打印与优化控制等任务,避免了常规仪表控制分散后人机联系困难、无法统一管理的缺点,保证设备在最佳状态下运行。

以下介绍与分布控制系统相关的几个概念。

3.l直接数字控制系统(DDC)

直接数字控制系统(DirectDigitalControl简称DDC)如图2所示。计算机通过模拟量输入通道(AI)和开关量输入通道(DI)采集实时数据,然后按照一定的规律进行计算,最后发出控制信号,并通过模拟量输出通道(AO)和开关量输出通道(DO)直接控制生产过程。因此DDC系统是一个闭环控制系统,是计算机在工业生产过程中最普遍的一种应用方式。

DDC系统中的计算机直接承担控制任务,因而要求实时性好、可靠性高和适应性强。

3.1.1直接数字控制系统的组成

直接数字控制系统主要由过程输入通道、过程控制计算机、过程输出通道三部分组成。

过程输入通道由模拟量输入和数字量输入两部分组成。模拟量输入通道由变送器、采样开关、放大器、A/D转换器和接口电路组成。其中变送器的作用是将非电量信号变换成标准电信号,可将温度、压力、流量变换成0-10mA或4-20mA的直流电信号,它是通过A/D转换器来实现的。—数字量输入通道由开关触点、光电耦合器和接口电路组成,反映生产过程的通/断状态的触点信号,经过光电耦合器和接口电路变换成数字信号送给计算机。

过程控制计算机直接承担运算和控制任务,首先通过过程输入通道采集被控对象的各种参数信号,再根据预定的控制规律(如PID)进行运算,然后向被控对象发出控制信号,再通过输出通道直接控制调节阀等执行机构。

过程输出通道由模拟量输出和数字量输出两部分组成。前者把计算机输出的数字控制信号转换成模拟电压或电流信号,再经过放大器去驱动调节阀等执行器实现对生产过程的控制。这一部分由接口电路、D/A转换器,放大器和执行器组成。后者把计算机输出的开关信号,经放大器去驱动电磁阀和继电器执行器,它由接口电器、光电耦合器、放大器和执行器组成。

3.1.2直接数字控制系统的基本算法

按照偏差的比例(P)、积分(I)和微分(D)进行控制,是连续系统中技术成熟、应用最为广泛的一种基本规律,将PID控制规律离散化并在计算机上实现,可以方便地利用已积累的成熟技术,而且可以在被控对象的数学模型或参数不很清楚的情况下,经过在线整定达到满意的效果。因此,将模拟调节规律离散化的数字PID算法,已被工业过程计算机控制系统普遍采用,成为DDC系统的基本算法。

数字PID控制算法,模拟量调节器的理想PID算式为

式中e(t)——偏差(设定值与实际输出值之差)

u(t)——控制量

Kp——比例放大系数

Ti一积分时间常数

Td——微分时间常数

写成传递函数形式

为了能在计算机上实现,必须将连续形式的微分方程化为离散形式的差分方程。设了为采样周期(与系统时间常数相比,T足够小),k为采样序号(k=0,1,2,……),可用矩形法计算而积以差分代替微分

式中e(k)——第k次采样所得偏差值

e(k-1)——第(k-1)次采样所得偏差值

u(k)——第k时刻的控制量

上式中的采样周期T越小(与系统时间常数比较而言),则被控过程与连续控制过程越接近,又称为“准连续控制”。

3.2分布式控制系统的体系结构

分布式控制系统(DistributedControlSystems简称DCS)20世纪于70年代中期出现并迅速发展起来,它将计算机技术、控制技术、图形显示技术和通信技术汇集于一体,可对分散在现场的设备进行控制,又可方便地集中管理、操作,与以往的控制系统相比,既避免了单台计算机集中控制的不足,又克服了常规仪表人机交互困难的缺点。

分布式控制系统的多台微型计算机取代了集中控制系统的单台计算机,从体系结构上分散了危险性,提高了可靠性。其基本结构功能如图3所示,图中现场控制站、数据采集站、工程师站、操作员站、监控计算机和管理计算机通过数据通信网络被有机地结合起来,组成分级分布控制系统。

3.2.1分布式控制系统的数据通信网络

数据通信网络是分布式控制系统的支柱。整个分布式控制系统的结构,实质上是一个网络结构,现场控制站、数据采集站、工程师站、操作员站、监控计算机等都是这个网络上的“节点”,都含有CPU和网络接口,它们都有自己特定的网络地址(节点号),可以通过网络发送和接收数据,网络中的各节点处于平等地位,既能共享资源,又不相互依赖,形成既有统一指挥,又使危险分散的功能结构,网络的架构区具有极大的伸缩性,可扩性很强,可以满足分布式控制系统扩充与升级的需要,十分灵活、方便。

(1)控制网络特点分布式控制系统的通信网络不同于通用计算机网络,与一般的通信网络比较,它有如下特殊要求:①有高可靠性和安全性,要求传递的信息绝对准确、可靠,为此常采用冗余技术、后备措施和自诊断功能。如:控制站采用双CPU板,双I/0板等。②具有良好的实时性。③对环境适应性强。

(2)网络拓扑结构建筑设备自动化系统常用的有总线网和环网,在两种结构中任意两节点通信可直接通过网络进行,各节点处于平等地位。

(3)网络通信协议组成建筑设备自动化系统,必须有一种大家都能接受并且共同遵守的工作语言来实现相互之间的对话,这就是数据通信协议标准。

用于建筑自动化控制网络的BACnet协议由物理层、数据链路层、网络层和应用层组成,或相当于开放系统互联参考模型(OSI)的第一、二、三、七层协议

其中:ARCnet为令牌总线网,数据传输速率为2.5-20bit/s,有良好的实时性。MS/TP是一种主/从令牌传递数据链路层技术,允许使用EIA-485硬件。BACnet实现了不同生产厂家自控系统之间进行通信的技术,即从一个“岛”到另一个“岛”之间进行相互联系的技术。

3.2.2现场总线技术的应用——分布式控制系统的进一步分散化

(1)现场总线概况现场总线(Fieldbus)是连接智能现场设备和自动化系统的数字式双向传输、多分支结构的通信网络。不同的现场总线遵循的协议不同,接口标准不同,各具特色。现场总线技术具有如下一些特点:①以数字信号取代4-20mA的模拟信号,极大地提高了信号转换的精度和可靠性,因此现场总线具有很高的性能价格比。②现场总线把处于设备现场的智能仪表(智能传感器、智能执行器)连成网络,使控制、报警、趋势分析等功能分散到现场仪表,使控制结构进一步分散化,导致控制系统体系结构的变化。③符合同一现场总线标准的不同厂家的仪表、装置可以联网,实现互操作,不同标准通过网关或路由器也可互联,现场总线控制系统是一个开放式系统。

(2)LonWorks技术

LonWorks是一种完全分布式控制的局部操作网(LocalOperatingNetwork—LON)技术。LonWorks网络节点由神经元芯片、收发器、固件和I/O接口电路组成。神经元芯片(Neuronchip)是这种智能节点的核心,它由媒体访问控制处理器、网络处理器和应用处理器组成,这就使得节点既能管理网络通信,又具有控制功能。Neuron芯片方块图。

芯片附有固件,该固件实现LonTalk通信协议和所有的任务调度。LonTalk协议遵循世界标准组织ISO提出的开放式互联参考模型OSI,具有完整的7层协议,管理网络节点的通信,分配节点地址,运行内含的冲突/检测回避算法,控制物理/电气的连接等。

Neuron芯片除了具有控制功能外,还带有媒体访问控制处理器和网络处理器,LonTalk协议固化在芯片的ROM中,使得LonWorks的微型节点无需中心结构的完全分布式控制模式,将控制功能分散到了现场级仪表。

LonWorks网络,可以采用多种通信媒体,如双绞线、电力线、同轴电缆、光缆、无线电、红外线,并且提供与上述多种媒体相适应的收发器,这使得同一网络中的信号可以在不同的媒体之间传输,因而可以根据需要组网,不同媒体之间以路由器进行连接。

LonMark是为了避免众多制造商以不同的含义来解释LonWorks技术,保证不同的产品能够方便地集成一起,以便构成一个真正开放的系统,而制定的一个行业标准。

(3)分布式控制系统的进一步分散化

传统的分布式控制系统在现场控制站这一级依然是一个集中式结构,而现在的分布式控制系统是在原有分布式控制系统的基础上,采用LonWorks现场总线的建筑设备自动化系统发展起来的新系统,标准LAN为原有的分布式控制系统,使用BACnet协议,以利于实现多种供应商的不同类型的子系统之间的通信信息交换,把具有控制功能的各个岛连成一个整体。新增的LonWorks现场总线使用LonTalk协议,把控制功能进一步分散到现场级仪表,标准LAN与现场总线之间的路由器相联。这样BACnet和LonMark两项标准互相补充,互为依托,构成一个完全分散的、真正开放的建筑设备自动化系统。

4楼宇自动化系统设备的发展历史及相关产品简介

楼宇设备自动化系统到目前为止已经历了四代产品:

第一代:CCMS中央监控系统(20世纪70年代产品)

BAS从仪表系统发展成计算机系统,采用计算机键盘和CRT构成中央站,打印机代替了记录仪表,散设于建筑物各处的信息采集站DGP(连接着传感器和执行器等设备)通过总线与中央站连接在一起组成中央监控型自动化系统。DGP分站的功能只是上传现场设备信息,下达中央站的控制命令。一台中央计算机操纵着整个系统的工作。中央站采集各分站信息,作出决策,完成全部设备的控制,中央站根据采集的信息和能量计测数据完成节能控制和调节。

第二代:DCS集散控制系统(20世纪80年代产品)

随着微处理机技术的发展和成本降低,DGP分站安装了CPU,发展成直接数字控制器DDC。配有微处理机芯片的DDC分站,可以独立完成所有控制工作,具有完善的控制、显示功能,进行节能管理,可以连接打印机、安装人机接口等。BAS由4级组成,分别是现场、分站、中央站、管理系统。集散系统的主要特点是只有中央站和分站两类接点,中央站完成监视,分站完成控制,分站完全自治,与中央站无关,保证了系统的可靠性。

第三代:开放式集散系统(20世纪90年代产品)

随着现场总线技术的发展,DDC分站连接传感器、执行器的输人输出模块,应用LON现场总线,从分内部走向设备现场,形成分布式输入输出现场网络层,从而使系统的配置更加灵活,由于LonWorks技术的开放性,也使分站具有了一定程度的开放规模。BAS控制网络就形成了3层结构,分别是管理层(中央站)、自动化层(DDC分站)和现场网络层(LON)。

第四代:网络集成系统(21世纪产品)

随着企业网Intranet建立,建筑设备自动化系统必然采用Web技术,并力求在企业网中占据重要位置,BAS中央站嵌入Web服务器,融合Web功能,以网页形式为工作模式,使BAS与Intranet成为一体系统。

网络集成系统(EDI)是采用Web技术的建筑设备自动化系统,它有一组包含保安系统、机电设备系统和防火系统的管理软件。

EBI系统从不同层次的需要出发提供各种完善的开放技术,实现各个层次的集成,从现场层、自动化层到管理层。EBI系统完成了管理系统和控制系统的一体化。网络集成系统结构图如图7所示。

目前,规模和影响较大的楼宇设备供应公司有美国霍尼维尔公司、江森公司、KMC公司、德国西门子公司等。

5结束语

楼宇自动化控制技术在我国还是一个新兴的技术领域,随着更多智能建筑的出现,将有更加先进的技术补充到这一领域中,使这一技术更加成熟、完善。

更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:#/?source=bdzd

分析楼宇自控系统的设计及存在的问题

楼宇自动化系统的功能:

◆制定系统的管理、调度、操作和控制的策略;

◆存取有关数据与控制的参数;

◆管理、调度、监视与控制系统的运行;

◆显示系统运行的数据、图象和曲线;

◆打印各类报表;

◆进行系统运行的历史记录及趋势分析;

◆统计设备的运行时间、进行设备维护、保养管理等

楼宇自动化系统是由中央计算机及各种控制子系统组成的综合性系统,它采用传感技术、计算机和现代通信技术对包括采暖、通风、电梯、空调监控,给排水监控,配变电与自备电源监控,火灾自动报警与消防联动,安全保卫等系统实行全自动的综合管理。各子系统之间可以信息互联和联动,为大楼的拥有者、管理者及客户提供最有效的信息服务和一个高效、舒适、便利和安全的环境。BA系统一般采用分散控制、集中监控与管理,其关键是传感技术与接口控制技术以及管理信息系统。

楼宇智能化5A

OA:办公自动化系统

CA:通讯自动化系统

FA:消防保安监控自动化系统

MA:信息处理自动化系统

BA:楼宇自动控制系统

楼宇自控系统作为智能建筑集成管理系统的一个子系统,应当发挥其节能降耗的特性。但是,正如我们所知,楼宇自控系统并不能被很好地利用。导致这一问题的原因有多方面,其中,如何设计楼宇自控系统是重中之重。

首先,设计人员要充分理解控制工艺和控制逻辑。楼宇自控系统之所以有别于智能化系统的其他子系统,是因为它是一个控制系统,涉及自动化专业和控制专业。因此,在进行楼宇自控系统设计时,应该了解并掌握所控设备的工艺过程,对被控设备有何作用、如何进行工作、关键的控制过程是如何实现的等有充分的掌握。以冷热源系统为例,如果一个楼宇自控系统的设计师不了解冷热源系统的工作原理、工作过程,他是不可能设计好一个冷热源的自动控制过程的,最终必将导致楼宇自控系统只能实现远程控制,而无法实现系统群控这样的功能。

其次是要做好前期配合协调。没有好的沟通就没有好的设计,没有好的配合也就没有好的实施。楼宇自控系统所涉及的机电设备极为广泛,因此楼宇自控系统的设计者和各个专业的人员都会有接触,其中和强电专业人员的沟通是必不可少的。建筑机电设备中所有的空调、风机、水泵、照明等设备都有自己的控制电箱,让这些电箱为楼宇自控系统提供有效的I/O采集点和控制点至关重要。无论楼宇自控系统设计得多么好,如果在最后的实施过程中才发现强电专业的电箱中没有二次回路的信号接入点,必将导致强电电箱重新更改设计,或是楼控系统对这些设备不监控。

最后是要重视深化设计的跟进。任何一个设计都会因为前期的不明确或者后期的变更而出现问题,因此在楼宇自控系统设计的过程中,也要不断跟进项目的进度情况。大部分项目在进行弱电设计时,其建筑设计也处在一个更改变化的过程中,即使本已全部完成,也可能因为业主要求的变化而有新的变更产生。所以楼宇自控系统的设计也将是一个不断变化、不断更新的过程。设计者要根据水、电、暖及其他系统的变化,对所设计的楼宇自控系统进行更新设计以使之满足要求。深化设计的跟进不仅应该在前期设计过程中得到重视,更应该在后期项目实施过程中进行,保持一个连续的状态,从而保证整个楼宇自控系统的可控性。

楼宇自控系统的设计不容小觑。在对系统背后的涉及逻辑充分理解后,充分沟通,持续跟进,一定会使楼宇自控系统的设计更进一个台阶!